Reactions with (Arylmethylene)cycloalkanones. 4. Synthesis of Derivatives of Octahydrocycloocta[d]thiazolo[3,2-a]pyrimidin-3-one of Expected Biological Activity

Abou El-Fotooh G. Hammam* and Mohamed I. All
National Research Centre, Dokki, Giza, and Department of Chemistry, Faculty of Science, University of Cairo, Giza, Arab Republic of Egypt

Cycloocta[d]pyrimidin-2-thiones (III) were prepared by heating 2-(aryimethylene)cyclooctanones whth thlourea in ethanolic potassium hydroxide. Compounds III reacted with chloroacetic acid to yleld
 2-acetyl-2,3,6,7,8,9,10,11-octahydro-5 H-cycloocta[d]thia-zolo[3,2-a]pyrimidin-3-ones (IV). The 2-aryImethylene derivatives (V) and the 2-aryihydrazono derivatives VI were prepared.

The literature $(6,8)$ reveals that bis(aryimethylene)cyclooctanones and the mono(aryimethylene)cyclooctanones possess biological activity.

Now we have found that 2-(arylmethylene)cyclooctanones (II), by analogy with bis derivatives (1-3), react with thiourea in ethanolic potassium hydroxide to give 4 -aryl-1,2,3,4,5,6,7,8,9,10-decahydrocycloocta[d] pyrimidine-2-thione (III). (See Scheme I.)

Compounds III were reacted with chloroacetic acid in the presence of acetic acid-acetic anhydride (see Experimental Section) to give products which dissolve in cold aqueous sodium hydroxide and are precipitated by hydrochloric acid. They neither effervesce nor dissolve in aqueous sodium carbonate. The products give a deep violet color with ethanolic ferric chloride. This color reaction had not been observed in the compounds obtained from the bis(arylmethylene) derivatives studied previously ($1-3$). The elemental analysis and the mass spectrum proved that these compounds are 2-acetyl-5-aryl-2,3,6,7,8,9,10,11-octahydro-5 H-cycloocta[d]thiazolo[3,2-a]-pyrimidin-3-ones (IV) and not the expected compounds of formula A, analogous to previous work (1-3).

(A)

Compounds III reacted with chloroacetic acid and aromatic aldehydes to give 5-aryl-2-(aryimethylene)-2,3,6,7,8,9,10,11-octahydro-5 H -cycloocta[d] thiazolo[3,2-a] pyrimidin-3-ones (V) and not the 2 -cinnamoyl derivatives B .

Compounds V also were prepared by the reaction of IV with aromatic aldehydes. No reaction took place in the absence of sodium acetate.

The products (V) of the reaction did not dissolve in aqueous sodium hydroxide or give the ferric chloride test. The elemental

Scheme $\mathbf{I}^{\text {a }}$

(1)
(1)

(II)
$\mathrm{NH}_{2} \mathrm{CSNH}_{2}$
$\mathrm{KOH}^{\mathrm{K}}$

(III)

${ }^{a} 1$ = Acetic anhydride and sodium acetate in acetic acid.
analysis and the mass spectrum of Vb agree with the structure. Deacetylation of IV occurred also during coupling with arenediazonium salts in pyridine medium to give 5 -aryl-2-aryl-hydrazono-2,3,6,7,8,9, 10,11-octahydro-5H-cycloocta[d]thiazolo [3,2-a]pyrimidin-3-ones (VI) (4). Compounds VI did not give the ferric chloride test.

Experimental Section

2-(Arylmethylene) cyclooctanones (II). The 2-phenylmethylene derivative (IIa) is known in the literature (5, 7). In this work, the arylmethylene derivatives are prepared in $\sim 75 \%$ yield as follows. To a mixture of $6 \mathrm{~g}(0.05 \mathrm{~mol})$ of cyclooctanone and 0.05 mol of the appropriate aldehyde was added aqueous sodium hydroxide (2 g of NaOH in 40 mL of $\mathrm{H}_{2} \mathrm{O}$). The mixture was refluxed for 5 h , allowed to cool, and then acidified with dilute HCl. The 2-arylmethylene derivatives were extracted with methylene chloride. The extract was dried over anhydrous sodium sulfate and the solvent was evaporated. The crude pale yellow oil ($\sim 8 \mathrm{~g}$) was used as such.

4-Aryl-1,2,3,4,5,6,7,8,9,10-decahydrocyctoocta[d]py-rimidine-2-thlones (IIIa-e) (Table I). A mixture of ca. 8 g of the crude 2-(aryimethylene)cyclooctanone, 3 g of thiourea, and 2.5 g of potassium hydroxide in 100 mL of ethanol was refluxed for 3 h . The ethanol was evaporated to half its volume

Table I. 4-Aryl-1,2,3,4,5,6,7,8,9,10-decahydrocycloocta[d] pyrimidine-2-thiones (III) ${ }^{a}$

compd	Ar	$\mathrm{mp},{ }^{\circ} \mathrm{C}$	solvent b
IIIa	$\mathrm{C}_{6} \mathrm{H}_{5}$	230	A
b	$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}-p$	230	M
c	$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OCH}_{3}-p$	204	A
d	$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}^{2}-p$	215	E
e	$\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{O}_{2} \mathrm{CH}_{2}-3,4$	210	E

${ }^{a}$ Elemental analyses in agreement with theoretical values were obtained. ${ }^{b} \mathrm{~A}=$ acetic acid $; \mathrm{E}=$ ethanol $; \mathrm{D}=$ dioxane $; \mathrm{M}=$ methanol.

Table I1. 2-Acetyl-5-aryl-2,3,6,7,8,9,10,11 octahydro-5Hcycloocta[d] thiazolo [3,2-a] pyrimidin-3-ones (IV) ${ }^{a}$

compd	Ar	$\mathrm{mp},{ }^{\circ} \mathrm{C}$	solvent
IVa	$\mathrm{C}_{6} \mathrm{H}_{5}$	230	M
b	$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}-p$	235	M
c	$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OCH}_{3}-p$	180	M
d	$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}^{2}-\mathrm{CH}$	245	M
e	$\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{O}_{2} \mathrm{CH}_{2}-3,4$	200	E

${ }^{a}$ See footnotes of Table I.
and the mixture was left overnight, whereas a white precipitate appeared. The mixture was treated with 50 mL of $\mathrm{H}_{2} \mathrm{O}$ and shaken and fittered. The white precipitate was crystallized from the proper solvent. The infrared spectra of III show bands at $3270(\mathrm{NH}), 1285(\mathrm{C}=\mathrm{S})$, and $1640(\mathrm{~N}-\mathrm{C}=\mathrm{S}) \mathrm{cm}^{-1}$. The mass spectrum of IIIa gave peaks at $m / e 272,30 \%\left(\mathrm{M}^{+}\right)$, and at m/e 195 (base peak).

5-Aryl-2-acetyl-2,3,6,7,8,9,10,11-octahydro-5H-cycio-octa[d]thlazolo[3,2-a]pyrimidin-3-ones (IVa-f) (Table II). A mixture of 1.5 g of compound III, 1 g of chloroacetic acid, and 4 g of fused anhydrous sodium acetate in 10 mL of acetic acid and 5 mL of acetic anhydride was refluxed for 3 h and left to cool. The reaction mixture was poured into water slowly with stirring. The solld obtained was filtered off, washed with water, and crystallized from the proper solvent (yield ca. 65%).

The infrared spectra of IV show bands at 1680 (CO) and $1613(\mathrm{C}=\mathrm{N}) \mathrm{cm}^{-1}$. The UV of IVa shows peaks at $\lambda=240$ ($\epsilon 10769$), $280(\epsilon 7692)$, and ($\epsilon 15571$) 360 nm . The mass spectrum of IVa showed molecular ion peak at $m / e 354\left(\mathrm{M}^{+}\right)$ (90%), $326\left(\mathrm{M}^{+}-28\right)(90 \%), 311\left(\mathrm{M}^{+}-43\right)(95 \%)$, and 277 $\left(\mathrm{M}^{+}-77\right)$ (base peak).

5-Aryl-2-(ary/methylene)-2,3,6,7,8,9,10,11-octahydro-5H-cycloocta[d]thlazolo[3,2-a]pyrimid/n-3-ones (Va-0) (Table III). General Method. (a) A mixture of 0.5 g of III, 1 g of chloroacetic acid, 0.3 g of the aromatic aldehyde, and 2 g of fused sodium acetate in 10 mL of acetic acid and 6 mL of acetic anhydride was refluxed for 2.5 h . The reaction mixture was poured into cold water, and the solid formed was collected and crystallized. (b) To a mixture of 0.5 g of IVa and 0.3 g of piperonaldehyde in 15 mL of methanol was added a few drops of piperidine, and the whole mixture was refluxed for 3 h and left overnight. The solid formed was collected and crystallized. (c) A mixture of 0.5 g of IVa and 0.3 g of piperonaldehyde in 10 mL of ethanol containing 0.1 g of NaOH was refluxed for 2 h and left overnight; 2 mL of acetic acid were added and the solid formed was collected and crystallized. (d) A mixture of 1 g of IVa, 0.5 g of piperonaldehyde, and 3 g of anhydrous sodium acetate in 7 mL of acetic anhydride was refluxed for 2 h , cooled, and poured into cold water. The solid formed (Vc) was collected and crystallized.

The yields in methods a and b were $\sim 90 \%$. Compound Vc prepared by the different methods a-d has the same melting

Table III. 5-Aryl-2-(ary methylene)-2,3,6,7,8,9,10,11-octahydro-5 H -cy cloocta $[d]$ thiazolo $[3,2-a]$ -pyrimidin-3-ones (V) ${ }^{\text {a }}$

compd	Ar	Ar^{\prime}	mp_{0}	sol- vent
Va	$\mathrm{C}_{6} \mathrm{H}_{5}$	$\mathrm{C}_{6} \mathrm{H}_{5}$	215	E
b	$\mathrm{C}_{6} \mathrm{H}_{5}$	$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}-p$	210	A
c	$\mathrm{C}_{6} \mathrm{H}_{5}$	$\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{O}_{2} \mathrm{CH}_{2}-3,4$	220	A
d	$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}-p$	$\mathrm{C}_{6} \mathrm{H}_{5}$	210	E
e	$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}-p$	$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}-p$	235	E
f	$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}-p$	$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OCH}_{3}-p$	200	E
g	$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OCH}_{3}-p$	$\mathrm{C}_{6} \mathrm{H}_{5}$	180	E
h	$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OCH}_{3}-p$	$\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{O}_{2} \mathrm{CH}_{2}-3,4$	215	A
i	$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OCH}_{3}-p$	$\mathrm{C}_{6} \mathrm{H}_{3}(\mathrm{OMe})_{2}-3,4$	180	E
j	$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}-p$	$\mathrm{C}_{6} \mathrm{H}_{5}$	212	E
k	$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}-p$	$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}-\mathrm{p}$	220	D
1	$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}-p$	$\mathrm{C}_{6} \mathrm{H}_{4}(\mathrm{OMe})_{2}-3,4$	220	A
m	$\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{O}_{2} \mathrm{CH}_{2}-3,4$	$\mathrm{C}_{6} \mathrm{H}_{5}$	185	M
n	$\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{O}_{2} \mathrm{CH}_{2}-3,4$	$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OCH}_{3}-p$	205	A
0	$\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{O}_{2} \mathrm{CH}_{2}-3,4$	$\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{O}_{2} \mathrm{CH}_{2}-3,4$	237	D

${ }^{a}$ See footnotes of Table I.
Table IV. 5-Aryl-2-(arylhydrazono)-2,3,6,7,8,9,10,11-octahydro-5H-cy cloocta $[d]$ thiazolo $[3,2-a]$ pyrimidin-3-ones (VI) ${ }^{a}$

compd	Ar	Ar^{\prime}	$\mathrm{mp},{ }^{\circ} \mathrm{C}$ solvent	
VIa	$\mathrm{C}_{6} \mathrm{H}_{5}$	$\mathrm{C}_{6} \mathrm{H}_{5}$	155	E
b	$\mathrm{C}_{6} \mathrm{H}_{5}$	$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}-p$	235	D
c	$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}-p$	$\mathrm{C}_{6} \mathrm{H}_{5}$	135	E
d	$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}-p$	$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}-p$	220	E
e	$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OCH}_{3}-p$	$\mathrm{C}_{6} \mathrm{H}_{5}$	435	E
f	$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OCH}_{3}-p$	$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}-p$	235	E

${ }^{a}$ See footnotes of Table I.
point and mixed melting point. The infrared spectra of V showed CO absorption at $\mathrm{ca} .1700 \mathrm{~cm}^{-1}$ and $\mathrm{C}=\mathrm{N}$ at 1613 cm^{-1}. The UV spectrum of Vb shows two maxima at $\lambda=240$ $\mathrm{nm}(\epsilon 15862)$ and $\lambda=390 \mathrm{~nm}(\epsilon 24827)$. The mass spectrum of Vb shows a molecular ion peak at m/e $414\left(\mathrm{M}^{+}\right)(50 \%), 386$ $\left(\mathrm{M}^{+}-28\right)(50 \%)$, and $337\left(\mathrm{M}^{+}-77\right)$ (base peak).

5-Aryl-2-(aryhydrazono)-2,3,6,7,8,9,10,11-octahydro-5H-cycloocta[d]thlazolo[3,2-a]pyrimidin-3-ones (VI) (Table IV). A cold diazonium salt solution (prepared in the usual way from 0.6 g of the amine) was gradually added with stirring to a cooled solution of 1.5 g of IV in 10 mL of pyridine. The reaction mixture was cooled for 0.5 h and poured into 100 mL of water. The precipitate formed was collected and crystallized. The infrared spectra of VI show CO absorption at ca. 1730 cm^{-1} and $\mathrm{C}=\mathrm{N}$ at ca. $1625 \mathrm{~cm}^{-1}$. The UV spectrum of VIa shows two maxima at $\lambda=240 \mathrm{~nm}(\epsilon 15000)$ and $\lambda=390 \mathrm{~nm}$ ($\epsilon 21000$).

LIterature Ched

(1) All, M. I.; Hammam, A. G. J. Chem. Eng. Data 1978, 23, 351.
(2) Ali, M. I.; El Kaschef, M. A. F.; Hammam, A. G.; Salah, A. K. J. Chem. Eng. Data 1979, 24, 377.
(3) Ali, M. I.; Hammam, A. G., submitted to J. Chem. Eng. Data.
(4) Ali, M. I.; El Kaschef, M. A. F.; Hammam, A. G. J. Chem. Eng. Data 1975, $20,128$.
(5) Braude, E. A.; Forbes, W. F.; Gofton, B. F.; Houghton, R. B.; Waight, E. S. J. Chem. Soc. 1957, 4711.
(6) Carlson, G. L.; Hall, I. H.; Abernethy, G. S.; Plantadosi, C. J. Med. Chem. 1974, 17, 154.
(7) Farrel, P. G.; Read, E. A. Can. J. Chem. 1968, 46, 3685.
(8) Hall, I. H.; Carlson, G. L.; Abernethy, G. S.; Plantadosi, C. J. Med. Chem. 1974, 17, 1235.

[^0]
[^0]: Received for review March 25, 1980. Accepted September 8, 1980.

